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1. Summary of Research in the Period July, 1981 -June 30, 19U-.-

Broadly speaking, the research supported by the Air Force Office of
Scientific Research during this period of nearly three years, has centered about
general matrix methods, and applications of matrix theory in solving large sys-
tems of linear equations.

Listed below are those research papers, appearing in print in this period
(July, 1981 - June, 1984) or pending publication, which were outgrowths of the
research supported by the Air Force Office of Scientific Research. (All carry, or
will carry, an acknowledgement of AFOSR support.)

1. J. J. Buoni and R. S. Varga, "Theorems of Stein - Rosenberg type. II.
Optional paths of relaxation in the complex plane", Elliptic Problem Solvers
(Martin H. Schultz, ed.), pp. 231 - 240, Academic Press, Inc., New York,
1981. 1.

2. R. S. Varga and D.-Y. Cai, "On the LU factorization of M-matrices",
Numer. Math. 38 (1981), 179 - 192.

3. J. J. Buoni, M. Neumann, and R. S. Varga, "Theorems of Stein - Rosenberg
type. III. The singular case", Linear Algebra and Appl. 42 (1982), 183 - 198.

4. R. S. Varga and D.-Y. Cai, "On the LU factorization of M-matrices: cardi-
nality of the set P(A )", SIAM J. Algebraic Discrete Methods 3 (1982), 250 -
259.

5. W. Niethammer and R. S. Varga, "The analysis of k-step iterative methods
for linear systems from summability theory", Numer. Math. 41 (1983), 177 -
206.

6. W. Gautschi and R. S. Varga, "Error bounds for Gaussian quadrature of
analytic functions", SIAM J. Numer. Anal. 20 (1983), 1170 - 1186.

7. R. S. Varga. W. Niethammer, and D.-Y. Cai, "p-cyclic matrices and the
symmetric successive overrelaxation method", Linear Algebra and Appl. 58
(1984), 425-439.

8. W. Niethammer, J. de Pillis, and R. S. Varga, "Block iterative methods
applied to sparse least squares problems", Linear Algebra and Appl. 58
(1984), 327-341.

9. R. S. Varga, "A survey of recent results on iterative methods for solving
large sparse systems of linear equations", Elliptic Problem Solvers U (G.
Birkhofff and A. Schoenstadt, eds.), pp. 197-217, Academic Press, Inc., New
York, 1984.

10. G. Csordas and R. S. Varga, "Comparisons of regular splittings of matrices",
Numer. Math. 44 (1984), 23-35.

11. A. Neumaier and R. S. Varga, "Exact convergence and divergence domains

for the symmetric successive overrelaxation (SSOR) iterative method applied
to H-matrices", Linear Algebra and Appl. a (1984), 261-272. (AY-)
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The above research papers can be roughly grouped into the following areas:

A. Factorization of M-matrics.

B. Extensions of the Stein - Rosenberg Theorem.

C. The use of summability methods and approximate conformal mappings tech-
niques in the study of iterative methods.

D. A study of the SOR (successive overrelaxation) and the SSOR (symmetric
successive overrelaxation) iterative methods, using the theory of H-matrices.

E. Comparisons of regular splittings of matrices.

We give below a brief discussion of our research results, according to the
topics listed above.

A. Factorization of matrices.

An n Xn M-matrix A = [ai j is said to admit an LU factorization into-
n X n M-matrices if A can be expressed as

A L U, (a.1)

where L = --- I is an n X n lower triangular M-matrix (i.e.,

1, O,/ ,jOforalli>j , and I, =Oforallj>i; i,j~ n ),
and where U=[ui,]] is an n Xn upper triangular M-matrix (i.e.,

u*, >O,uj ,j _, Oforallj>i and u,-=Oforalli>j: 1<i,j~ n ).

A well-known result from 1962 of Fiedler and Ptik [A.1] gives that any non-
singular M-matrix admits such an LU factorization in (a.1) with L nonsingu-
lar, while in 1977, Kuo [A.3] later showed that any n Xn irreducible M-matrix
(singular or not) admits such an LU factorization with, say, L nonsingular, as in
(a.1). More recently, in 1981, Funderlic and Plemmons [A.2] have shown that if
an n Xn Al-matrix A satisfies

T TA >O T for some_ >0, (a.2)

then A admits an LU factorization into M-matrices, as in (a.1), with L non-
singular.

What was left open in the literature was an analogous discussion of the LU
factorization of reducible and singular M-matrices. This was completely settled
by Varga and Cai [A.4], using graph theory. That result is

Theorem 1. ([A.4]). Let A be an n X n M-matrix. Then, the follow-
ing are equivalent:
i) A admits an LU factorization into M-matrices with nonsingular L ;

u) for every proper subset of a - {=,oa2,",ak } of {1,2,'--,n } for which
*the matrix A [a] is singular and irreducible, there is no path in the

directed graph G. (A) of A from vertex v, to vertex voi , for any
t > ak and any I < j < k
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It turns out that Theorem 1 also gives the previous results of Fiedler and
Ptik [A.1] and Kuo [A.3] as special cases.

Next, the condition (a.2) of Funderlic and Plemmons [A.2] implies that

_z(PAPTr) > O , where z:= Px >0, (a.3)

for every n X n permutation matrix. In other words, the result of Funderlic and
Plemmons [A.2] gives that condition (a.2) is a sufficient condition that PAP r
admits an LU factorization into M-matrices with nonsingular L, for every
n X n permutation matrix P. It turns out that condition (a.2) is a necessary
condition for this as well, and this is given Theorem 3 of Varga and Cai [A.4].

Finally, there are easy examples of n X n M-matrices A which do not
satisfy (a.3) for every n X n permutation matrix P. With A an n Xn M-
matrix, and with

P n(A) := {n Xn perm. matrices P : PAP Tadmits an (a.4)

LU factorization with nonsingular L. }

there then exists n X n M-matrices A for which P 9(A ) does not contain all
n X n permutation matrices. In Varga and Cai [A.5}, a reduction algorithm
(based on the reduced canonical form of the matrix A) is given which either gives
the exact number of elements in P ns or gives nontrivial upper and lower esti-

mates for the exact number of elements in P n

References

A.1. M. Fiedler and V. Ptik, "On matrices with nonpositive off-diagonal elements
and positive principal minors", Czech. Math. J. 12 (1962), 382 - 400.

A.2. R. E. Funderlic and R. J. Plemmons, "LU decompositions of M-matrices by
elementation without pivoting", Linear Algebra and Appl. 41 (1981b.99 -
110.

A.3. 1-wen Kuo, "A note on factorization of singular M-matrices", Linear Algebra
and Appl. 16 (1077), 217 - 220.

A.4. R. S. Varga and D.-Y. Cai, "On the LU factorization of M-matrices",
Numer. Math. 38 (1981), 179 - 192.

A.5. R. S. Varga and D.-Y. Cai, "On the LU factorization of M-matrices: cardi-
nality of the set P ng(A )", SIAM J. Alg. Disc. Meth. 3 (1982), 250 - 259.
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B. Extensions of the Stein - Rosenberg Theorem.

To iteratively solve the matrix equation Ag = _, where A is a given n X n
complex matrix, it is convenient to express the matrix A as the sum

A =-D-D-L- U (b.1)

where D, L, and U are n X n matrices with D assumed nonsingular, and to
form the iteration matrices

Lw:=(D -wL )-1 { (1-w) D + wU },andJ :=I-wD- I A . (b.2)

Here, L. is the familiar successive overrelaxation (SOR) iteration matrix, while
J. is the extrapolated Jacobi matrix. (The parameter w is the relaxation factor.)
Now, the classical Stein - Rosenberg Theorem [B.4] can be seen to give, in the
case that J > 0 and that D-'L and D - 1 U are resp. strictly lower and
strictly upper triangular matrices, the following comparison of the spectral
radii of these iteration matrices:I p(L ) _ p(J) < I, for all0 < w < 1 if p(J 1) < 1,

p(L ) p(J j > 1, for all 0 < w < 1 if p(J 1) > 1. (b.3)

Thus, on setting

f)L E : p(,,, < 1 ;L WE C p(L,,)> I (b.4)

and

J:-wE C:p(Jo ) < 1: Dj : E :P(Jj > 1 , ..(b.4

a consequence of the Stein - Rosenberg Theorem can be stated as the

Theorem ([B.4]). Assuming J1 -> 0 and that D is nonsingular in (b.1)
with D-1L and DU respectively strictly lower and strictly upper tri-
angular matrices, then

-a1L n nJ D (0,1] if P(J1) < 1, (b.5)
and

DL n DL D (0,1] if p(J 1 ) > 1. (b.5')

It was this simultaneous convergence i.e., f1l n fln 0 0, of the SOR
and the extrapolated Jacobi iterative methods in (b.5) which was of interest.
One question then is whether this simultaneous convergence of these two iterative
methods is valid without the assumption that J, > 0 and that D-'L and
D- 1 U are triangular. Another question is whether this could be geometrically
characterized. These questions were affirmatively answered in Buoni and Varga
[B.1].
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Theorem ([B.1]). For the splitting of (b.1), assume only that D is
nonsingular. Then,

PL n 0# 3 0

iff the point z = 0 is not contained in K (D A), the closed convex hull
of the elgenvalues of D-A .

Continuing these investigations
of generalizations of the Stein - Rosenberg Theorem, suppose that we have the

simultaneous convergence of the SOR and J, iterative methods, i. e. ,
0 1K (D-'A ) from the previous theorem. This implies that if we consider all
relaxation factors w on the circle I w = = r, for r > 0 sufficiently small, we can

attempt to find a unique 9(r) such that w = re s(r) minimizes the spectral

radius p(J_,I on the circle, and, on joining these points {reie(?)}, we can speak of
an optimal path of relaxation, in the complex plane, for J ,. One of the main
consequences of Buoni and Varga [B.2] is the

Theorem ([B.2]). For the splitting of (b.1), assume that D is non-

singular and that 0 J K (D -1A) . Then, for each r > 0 sufficiently

small, there is a unique real 4(r) such that
min p ( Jle. e - {

ein (Jree) ,

Moreover, if re '* is the closest point of K (D -'A) to the origin, then

,4 lim 8(r) - -'.

Thus, an optimal path of relaxation exists for J4,, and is tangential to the ray
re-i ' , at the origin. Finally, an optimal path of relaxation for L, similarly
exists, and is tangential to the optimal path for J, , at the origin.

Cases of interest arise where an iteration matrix B is semiconvergent, i.e.,

lim Bk exists. (b.6)
k-co

In analogy with (b.4), we similarly set (cf. (b.2))

S w E W : J is semiconvergent (; b.7)

SL (w EC: L is semiconvergent

For additional notation, let N (B) E e" : B = denote the null
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space of an n X n matrix B, and set

index (B) :m min Ik : k 0,1,2,-.., and N (B k) = N (Bk+1) }, (b.8)

where B 0 :_ I . Then, the analogue of the Theorem [B.1] in the singular case is
given by Buoni, Neumann, and Varga [B.3]:

Theorem ([13.3]). For the splitting of (b.1), assume that D is non-
singular, and that all eigenvalues of D- 1A are not zero. Then,

( S, n SL ) \ { 0} 1'

iff the point z = 0 is not contained in the closed convex hull of the
nonzero eigenvalues of D-'A, and index (D-'A) < 1 .

References

B.1. J. J. Buoni and R. S. Varga, "Theorems of Stein - Rosenberg type", Numeri-
cal Mathematics (R. Ansorge, K. Glashoff, B. Werner, eds.), pp. 65 - 7,.5Bir-
khauser Verlag, Basel, 1979.

B.2. J. J. Buoni and R. S. Varga, "Theorems of Stein - Rosenberg type. II.

Optimal paths of relaxation in the complex plane", Elliptic Problem Solvers
(M. H. Schultz, ed.), pp. 231 - 240, Academic Press, Inc., New York, 1981.

B.3. J. J. Buoni, M. Neumann, and R. S. Varga, "Theorems of Stein - Rosenberg
type. III. The singular case", Linear Algebra and Appl. 42 (1982), pp. 183 -
198.

B.4. P. Stein and R. Rosenberg, "On the solution of linear simultaneous equations
by iteration", J. London Math. Soc. 23 (1948), 111 - 118.
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C. The use of summability methods and approximate conforaial map-
ping techniques in the study of iterative methods.

It is well-known in the theory of iterative methods that ideas coming from
summability theory can be applied to accelerate standard iterative methods. A
good example of this is the concept of semi-iterative methods (which was

F! introduced by the author in [C.2]). It is also well-known that the optimization of
parameters in an iterative method can often be achieved by means of conformal
mapping techniques. A good example of this is the optimal determination of
the relaxation factor w for the successive overrelaxation (SOR) iteration method,
in the two-cyclic consistently ordered case, as first treated in the famous work in
1954 of D. M. Young [C.3]. There, one has the relation

(X+w- 1)2 = Xw 2 p 2

betwen the eigenvalues X of the SOR iteration matrix L and the eigenvalues p
of the associated Jacobi matrix J . The classic result of Young is that the
optimum value of w, wb, is given by

Wb = 2
wb=1+VX1 - p2 {(j) cl

(where p(J) denotes the spectral radius of J ), when the eigenvalues of j 2 are
nonnegative. This result was derived using known conformal properties of the

v . Joukowski mapping.

Deeper theoretical results from summability theory were apparently only
recently used in the research of Niethammer and Varga [C.1], where conformal
mapping techniques were also brought into play. To briefly describe the results
of [C.11, suppose that we are given an n X n matrix equation A Ix - ., which is
reduced to the form

x = T (c.2)

where the n X n matrix T and the vector a are known, and where x is the

sought vector solution. Now, a k-step stationary iterative method based on (c.2)
is

,V. := po(Tym.-I +. ) + P Ym-1 + - +Pk _Mm-k , m = k, k+l,'--, (c.3)

where it, -b, "", Yk-1 are given starting vectors, and where po, p 1, "', Pk are fixed
complex numbers (independent of m ) which are assumed to satisfy

Po+Pl+'"+Pk =1. (c.4)

The object, of course, is the goal of understanding the theory for selecting the
parameters (pi }ff0 , so as to make the associated error vectors

-E ,= ! - ,k 1 (c.5)

tend to zero as rapidly as possible when m --- o.

•9 ~- :yz: ~~-c %
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The point of view taken in [C.1] is the following. Given some parameters
{ Pk }=k0 satisfying (c.4), what are the geometrical conclusions, on the spectrum

of eigenvalues of the matrix T of (c.2), so that the error vectors {E,, }m=k of
(c.5) decrease in norm as K m, as m -- oo, where 0 < K < 1 ? The technique
considered in [C.1} is to use the general Euler method, from summability

00
theory, to transform the not necessarily convergent Neumann series- T i for

oo it

(I - T) -1 to a polynomial series E vi (7) with improved convergence proper-

ties, where each vi (7) is a polynomial in the matrix T, of degree at mostj

The convergence factor K where Km measures the norm of Em) is then deter-
mined by conformal mapping techniques for k-step stationary iterative methods.

The detailed theoretical results of IC.1], along with the necessary notations,
are too lengthy to be easily and briefly described here. However, we note that
Section 9 of [C.1] is devoted to the study of five examples which connect with
well-known results in the theory of iterative methods.

References

C.1. W. Niethammer and R. S. Varga, "The analysis of k-step iterative methods
for linear systems from summability theory", Numer. Math. 41 (1983), 177 -
206.

C.2. R. S. Varga, "A comparison of the successive overrelaxation method and
semi-iterative methods using Chebyshev polynomials", J. Soc. Indust. Appl.
Math. 5 (1957), 34 - 46.

C.3. D. M. Young, "Iterative methods for solving partial differential equations of
elliptic type", Trans. Amer. Math. Soc. 76 (1954), 92 - 111.
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S, D. A study of the SOR (successive overrelaxation) and the SSOR (sym-
metric successive overrelaxation) iterative methods, using the theory of
H-matrices.

To describe our recent research results in this area, we first discuss the
results of Varga, Niethammer, and Cai [D.7]. In the iterative solution of the
matrix equation

Ax=k , (d.1)

assume that the n X n matrix A is in the partitioned form

A 1,1 A 1 ,2  0 0 0

0 A 2,2 A 2 ,3  0 0

A - (d.2)

0 0 0"" Ap-,p_ 1 -Apl,p

A 1,p 0 0... 0 APP

where each diagonal submatrix Ai is square and nonsingular (1 < i < p,
where p _! 2). With D := diag [Al,1 ; A 2,2; -., AP, P, the associated block
Jacobi matrix B := I - -1 A has the (weakly cyclic of index p) form:

0 B 1,2  0 ... 0 0

0 0 B 2,3 ... 0 0

B -(d.3)

0 0 0 0 BP-l'p

Bp, 10 0 "" 0 0

On writing B --L + U (where L and U are respectively strictly lower and
strictly upper triangular matrices), the associated SSOR iteration matrix S , is
defined as usual by

Sw,:--(I - wU)-' w(-)I + wL I (I - wL)- I [(l- W)l+ WU ,(d.4)

where w is the relaxation parameter. Then, the new result of [D.71 is the
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functional equation

w [ (W)2] - [ +1 W (2_W)2wPpP, (d.)

which couples the eigenvalues r of S W, with the eigenvalues p of B This func-
- tional equation (d.5) has thus the flavor of Young's classical result [D.81 of 1054

(X +w- 1)2 =Xw 2 p 2 ,

and its extension by Varga [D.5] in 1959

(X + W - 1)p =X-I Wp P

in the weakly cyclic of index p case, which similarly couples the eigenvalues X of
the SOR operator L ,, defined by

L W L:= (I -wL)-I(- )l + g (d.6)

with the eigenvalues p of the Jacobi matrix B .

To describe an application of the functional equation (d.5) to H-matrices,
we first recall some important concepts due to Ostrowski [D.4] in 1937. Any real
n X n matrix E = [ejj] with e <, < 0 for all i 3 j, can always be expressed
as

q.E--rI-C,

where C=[c, ] is an n X n matrix having only nonnegative entries. If

qj > p(C) (where p(C) denotes the spectral radius of C ), then E is said to be a
nonsingular M-matrix. Next, if F - [fi,/] is any n Xn complex matrix, then

its associated real n X n comparison matrix, M (F ) : ], [ ] is defined by

aiy :-- If , f, f ,f I ,i 34 j 1< i, j n .

Then, F is said to be a nonsingular H-matrix if its comparison matrix M(F) is
a nonsingular M-matrix. For further notatiod, if F = If j,] is any n Xn com-
plex matrix, then I F I denotes the real n Xn matrix I I f j, I I

Consider then any n X n complex matrix A = [ai,.] having nonzero diago-
nal entries, and set

£(A):= B =-[bij]: b, I = Iaj, I for all I < i,j _n .(d.7)

For each B E f(A), we can express B as

B =D(B)-L(B)- U(B),

where D(B) := diag [ b 1,1 ; b2,2 ; ... , bn,n ] is nonsingular, and where L(B)

and U(B) are resectively lower and upper triangular matrices. Then

J(B): (D (B))' {L(B) + U(B)}
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defines the associated Jacobi matrix for each B E fl(A).
With the notation

H v := { A is an n Xn complex matrix, n arbitrary •A is an H -0&*ix

withp { IJ(A ) -v , for eachvE [o,1),

V.it was shown by Alefeld and Varga in ID.1] in 1976 that, for A E H , then for
any B E Q(A ), its associated SSOR iteration matrix S(B) (cf. (d.4)) satisfies

p(S(B) ) < for any 0 <w< 2 (d.9)
2

i.e., for each B in Q(A ) and for each w in (0, 2 ), S,(B) is convergent.

Now, a natural question is if the interval ((0, -- ) in w for convergence in
1+V

(d.9) is sharp for the class H, of H--matrices. By applying the functional equa-
tion of (d.5) for special matrices in H, , it was shown in Varga, Niethammer, and

Cai [D.7] that, for each v with I < v < 1
2

sup {p ( S,(B) ) "BE H1,  >1 (divergence) (d.10)

for any w, satisfying
2 =+2 :- < w, .(d.l11)

Then, subsequently it was shown in Neumaier and Varga [D.2] (using the theory
of regular splittings) that the bound of (d.11) exactly separates the convergence
and divergence domains for matrices in H,. More precisely, if

~1
. 2, ifO<v< -;

2, if0 if < <1
2

-W ( V): 22 (d. 12)

1 + V2/'-- -- if

then (cf. [D.2j) for each matrix A in H1, and for each w with 0 < w < W(ti),
p (S,(A) < 1 . (d. 13)

Finally, we give brief mention to the fact that similar techniques are applied
in Niethammer, de Pillis, and Varga [D.3] to the iterative solution of sparse least



- 13-

squares problems. A survey of the results of this section can also be found in
[D.6].
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E. Comparisons of regular splittings of matrices.

The theory of regular splittings of matrices, introduced in 1960 by Varga
[E.2], has been a useful tool in the analysis of iterative methods for solving large
systems of equations. For our theoretical background, let A, M, and N be all
n X n complex matrices. Then, A = M - N is a regular splitting of A if M is
nonsingular and if M -1 and N have all their entries nonnegative, written
M-1> 0 and N > 0.

Consider the solution of the matrix problem

A z k, (e.1)

where A admits a regular splitting A = M -N. Then, (e.1) becomes

MX =Nx +k ,'-"(e.2)

which induces the iterative method

M x ( +l) N x(m) +k , orx( +l) M - l N (m) + Mlk ,m = 0,1e:)

The following are well-known:

Theorem A ([E.2]). Let A = M - N be a regular splitting of A. If
A -1 > 0, then

p(M -1 N ) -  p (A- 1 N) < , (e.4)

1 + p (A-IN)

i.e., the iterative method of (e.3) is convergent for any start vector x(O).

Conversely, if p (M -' N) < 1, then A-' > 0.

Theorem B ([E.2]). Let A = M - N, = M 2 - N 2 be two regular
splittings of A,where A -' > 0. If N 2  NI (i.e., N 2 - N, I 0 ), then

1 > p (M2' NO) p (Ml-' N,) (e.5)

i.e., the iterative method (e.3) associated with the splitting A = MI - N,
is asymptotically faster than that associated with the splitting
A = M 9 -N 2.

Less well-known, but nevertheless useful in applications, is the following
unpublished thesis result of 1973 of Z. Woinicki [E.3]:

Theorem C ([E.3]). Let A = M - N, = M 2 - N 2 be two regular
splittings of A , where A-' > 0. If M -' > M 2

-! , then

I > p (M 2
- N 2 ) p (MI -I N,). (e.6)
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Now, with the hypotheses of Theorem B or C, it is shown in Csordas and
Varga 1E.11 that
i) N 2 _ N, implies M 1 > M 2 ,1

ii M1-1 > M 2
-1 implies A -' N 2A- > A-1 NI A-;

iii) A-' N 2 A-' > A-' N , A-' implies (A-' N 2 }i..A-1 > (A-' NI)i A-' for
each positive integer j.

Moreover, the reverse implications in i), ii), and iii) are not in general
valid. Now, the weakest hypothesis of the above, namely
(A-' N 2)i A -1 > (A - ' NI)i A for some positive interger j, gives a gen-
eralization of Theorem B and C.

Theorem 1. ([E.1]). Let A = M - N = -M 2 - N 2 be two regular
splittings of A, where A-' > 0. Assume there exists a positive integer
j for which (A-1 N 2)i A-1 _! (A-' N,)i A-'. Then,

I > p (M -1 N,) _ P (M 2 -' N 2). (e.7)

A final result of Csordas and Varga [E.11 gives partial converses to Theorems
B and C, and unifies the earlier results of Varga and Woinicki.

Theorem 2 ([E.1]). Let A = M, - N, = M 2 - N 2 be two regular
splittings of A, where it is assumed that A-' > 0. If

p (M 2 -' N 2) > p (M,-' NI) , (e.8)

there exists a positive integer j 0 for which ( cf. iii))

(A-' N 2)' A-' > (A-' N,)' A-' for all j _ j0 . (e.0)

Conversely, if there is a positive integer j for which

(A - ' N 2)i A-' > (A-' N,)i A-', (e.10)

then (e.8) is valid.
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